INFO I201 Homework 1 Due 05/9/13

• **Reading assignment**: Read Chapter 1, Section 2.1, and the first two pages of Section 2.2 of the textbook.

• Regular problems:

- 1. Determine whether each of the following propositions is true or false.
 - 1 + 1 = 3 if and only if pigs can fly.
 - If pigs can fly, then 1 + 1 = 3.
 - If 2 + 2 = 4, then 1 + 2 = 3.
 - If 0 > 1 and 1 + 1 = 2, then 1 = 1.
- 2. Construct the truth table for each of the following formulas:
 - (a) $(A \lor B) \land C$
 - (b) $(\neg A \lor B) \longrightarrow (\neg A)$
 - (c) $(A \longrightarrow B) \longleftrightarrow ((\neg B) \longrightarrow (\neg A))$
 - (d) $A \longrightarrow ((B \longrightarrow A) \longrightarrow C)$
- 3. Let us define a new binary connective denoted $A \otimes B$, as follows:

A	В	$A \otimes B$
t	t	t
t	f	${ m t}$
f	\mathbf{t}	f
f	f	\mathbf{t}

Construct the truth table for the formula $(A \longleftrightarrow B) \otimes (A \longleftrightarrow \neg B)$.

- 4. We say that $B \longrightarrow A$ is the *converse* of $A \longrightarrow B$ and that $\neg B \longrightarrow \neg A$ is the *contrapositive* of $A \longrightarrow B$. Find the converse and the contrapositive of the following implications.
 - If n is less than 4, then n^2 is less than 16.
 - If p is a prime number, then it is less than 3.
- 5. Is a tautology satisfiable? Is a satisfiable formula a tautology? Is a satisfiable formula a contradiction? Explain your answers.
- 6. Which of the following are tautologies? (Use truth table to prove or a counterexample to disprove.)

- $((A \longrightarrow B) \land (B \longrightarrow C)) \longrightarrow (A \longrightarrow C)$
- $(A \longrightarrow B) \longleftrightarrow ((\neg B) \longrightarrow (\neg A))$
- $\neg (A \land B) \longleftrightarrow ((\neg A) \lor (\neg B))$
- $(A \longrightarrow B) \longrightarrow (\neg A \longrightarrow \neg B)$
- $(A \longleftrightarrow B) \longleftrightarrow (\neg A \longleftrightarrow \neg B)$